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A glucopyranosyl benzyl phthalate, two mannopyranosyl 
benzyl phthalates, and a 2-deoxyglucopyranosyl benzyl 
phthalate, which were prepared from the corresponding 
1-hydroxy sugars and benzyl hydrogen phthalate, were found 
to be efficient glycosyl donors in the glycosylations of various 
glycosyl acceptors using TMSOTf as a promoter.

Introduction
Development of efficient and stereoselective glycosylation metho-
dologies has been one of the major concerns in synthetic organic 
chemistry in recent years due to important biological functions of 
complex oligosaccharides and glycoconjugates.1–3 Devising new 
glycosyl donors and developing new activation systems for exist-
ing donors have led to major advances in this field. In this respect, 
there still remains a need for more efficient and generally applicable 
new glycosyl donors although quite efficient glycosyl donors are 
presently available.4,5 In fact, there have been recent reports on 
new glycosyl donors and new activation systems.6–13 We have also 
recently reported a novel type of glycosyl donor, the 2′-carboxy-
benzyl (CB) glycoside A, as shown in Fig. 1 for stereoselective 
-mannopyranosylation14 and 2-deoxyglycosylation15 and applied 
this methodology to the synthesis of a tetrasaccharide.16 Lactoni-
zation of the glycosyl triflate B, which was derived from the CB 
glycoside A, was the driving force for the facile generation of the 
oxocarbenium C for the glycosylation. In continuation of the search 
for more efficient glycosyl donors, we envisaged that treatment of 
the glycosyl benzyl phthalate D with Lewis acids would also gene-
rate the oxocarbenium ion C by cyclic anhydride formation as 
shown in Fig. 1. An added impetus to design the phthalate D comes 
from the fact that the method for the preparation of D could be useful 
complement to that for the preparation of A. The CB glycoside A 
was prepared from the glycosyl halide and thus the original anomeric 
oxygen atom was replaced by 2-(hydroxymethyl)benzoic acid such 
as in the case of preparation of thioglycosides17 while, alternatively, 
the glycosyl benzyl phthalate D or the glycosyl hydrogen phthalate 
E‡ would be prepared from the 1-hydroxy sugar through retention 
of the anomeric oxygen atom such as in the case of the preparation 
of glycosyl trichloroacetimidates.18 Herein we report the synthesis 
and glycosylation with the glycosyl benzyl phthalate D as a novel 
type of glycosyl donor.

Results and discussion
Crystalline benzyl hydrogen phthalate (1) was readily obtained in 
large quantities by the reaction of inexpensive phthalic anhydride 
and benzyl alcohol.19 Esterification reaction of 2,3,4,6-tetra-O-
benzyl-D-glucose and compound 1 using DCC in the presence 
of a catalytic amount of DMAP provided glucopyranosyl benzyl 
phthalate 2 (/ = 3 : 2) as shown in Scheme 1. Three more glycosyl 
benzyl phthalates, namely, tetra-O-benzyl--mannopyranosyl 
benzyl phthalate 3,20 2-O-acetyltri-O-benzyl--mannopyranosyl 
benzyl phthalate 4, and 2-deoxyglucopyranosyl benzyl phthalate 

† Electronic supplementary information (ESI) available: Spectroscopic 
and analytical data for all new compounds. See http://www.rsc.org/
suppdata/ob/b4/b405793g/

Fig. 1

Scheme 1 Reagents and conditions: i, benzyl hydrogen phthalate (1), 
DCC, DMAP (cat.), CH2Cl2, 0 °C to rt, 3 h, 86% (/ = 3 : 2); ii, 6, TMSOTf, 
CH2Cl2, 0 °C, 1 h, 91% (/ = 2.4 : 1).

5 (/ = 1 : 1) were prepared from the corresponding 1-hydroxy 
sugars in analogous fashions. These glycosyl benzyl phthalates 
were stable enough to store at room temperature for a few months 
without any change.

Glucopyranosyl donor 2 was readily activated by TMSOTf in di-
chloromethane and coupled with various glycosyl acceptors to afford 
disaccharides in high to moderate yields. For instance, a solution of 
1.0 equiv. of compound 2, 2.0 equiv. of the primary alcohol acceptor 
6, and 0.5 equiv. of TMSOTf in dichloromethane was stirred at 0 °C 
for 1 h. After quenching with saturated aqueous sodium bicarbonate 
solution, the reaction mixture was purified by column chromatogra-
phy to afford a mixture of - and -disaccharides 15 (/ = 2.4 : 1) 
in 91% yield (Scheme 1 and entry 1 in Table 1). The glycosylation 
also proceeded with less than 0.5 equiv. of TMSOTf although more 
slowly. Reaction of compound 2 with other primary alcohol accep-
tors 7 and 8 similarly provided disaccharides 16 (/ = 1.4 : 1) in 
90% yield and 17 (/ = 1.2 : 1) in 87% yield, respectively (entries 
2 and 3 in Table 1). Coupling of donor 2 with secondary alcohol 
acceptors required a larger quantity of TMSOTf (1.0 equiv.) and 
a longer reaction time (1.5 h) and afforded -disaccharides as 
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2-Deoxyglucosyl benzyl phthalate 5 was found to be more 
reactive than glycosyl benzyl phthalates 2, 3, and 4 and could be 
activated by TMSOTf even at −78 °C to give a little higher yield 
of disaccharides. For example, to a solution of donor 5 (1.0 equiv.) 
and acceptor 6 (2.0 equiv.) in dichloromethane was added 
TMSOTf (0.5 equiv.) at −78 °C. The further reaction at −78 °C 
for 30 min and warming the reaction mixture over 1 h to −40 °C 
afforded disaccharide 29 (/ = 3 : 1) in 94% yield (entry 1 in 
Table 2). Reaction of 5 with other primary alcohols 7 and 13 also 
gave a mixture of - and -disaccharides 30 (/ = 1.3 : 1) in 79% 
yield and 31 (/ = 1 : 1.2) in 89% yield, respectively (entries 2 and 
3 in Table 2). Couplings of 5 with secondary alcohol acceptors 10, 
12, and 14, on the other hand, were completely stereoselective and 
afforded exclusively -disaccharides 32, 33, and 34, respectively in 
high yields (entry 4–6 in Table 2).

In conclusion, we have found that glycosyl benzyl phthalates 
behave as efficient glycosyl donors by extrusion of stable phthalic 
anhydride upon treatment with TMSOTf to afford disaccharides 
in the glycosylation of various glycosyl acceptors. Reactions of 
mannopyranosyl benzyl phthalate 3 and 2-deoxyglucopyranosyl 
benzyl phthalate 5, which both have no participating group at C-2, 
with secondary alcohol acceptors were completely stereoselective 
to afford exclusively -disaccharides.
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3 with various glycosyl acceptors were also carried out under 
the same reaction condition as that with glucopyranosyl donor 
2 and afforded disaccharides in reasonable yields. Unlike the 
glucopyranosyl donor 2, the mannopyranosyl donor 3 exhibited -
selectivity regardless of primary or secondary alcohol acceptors and 
the selectivity was also more pronounced than that with 2. Moderate 
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saccharides 27 in 76% and 28 in 77% yields, respectively (entries 13 
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Table 1 Glycosylation with glycosyl benzyl phthalates 2, 3, and 4a

Entry Donor Acceptor Product Yield (%)b Ratio (/)

 1 2  15 91 2.4 : 1
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 3 2  17 87 1.2 : 1
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 13 4 7 27 76  only
 14 4 9 28 77  only
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6 5  34 88  only

a Glycosylation was carried out with 1.0 equiv.. of donor, 2.0 equiv.. 
of acceptor and 0.5 equiv.. of TMSOTf in dichloromethane at −78 °C 
to −40 °C. b Isolated yield.
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donor 3 (62 mg, 0.08 mmol, 1.0 equiv.), the acceptor 10 (74 mg, 
0.16 mmol, 2.0 equiv.), and TMSOTf (14.5 L, 1.0 equiv..) in CH2Cl2 
(5 mL) was stirred at 0 °C for 1.5 h. The reaction was quenched by 
addition of saturated aqueous NaHCO3 solution (2 mL) and then 
extracted with CH2Cl2 (3 × 5 mL). The combined organic layer was 
washed with brine (10 mL), dried (MgSO4), and concentrated in vacuo. 
The residue was purified by silica gel flash column chromatography 
to afford the disaccharide 25 (54 mg, 68%): colorless oil, Rf = 0.35 
(n-hexane/EtOAc, 3;1, v/v); []D

20 = +14.2 (c = 2.3, CHCl3); 1H NMR 
(500 MHz, CDCl3)  3.37 (s, 3 H, CH3O), 3.52 (d, J = 10.6 Hz, 1 H), 
3.65 (dd, J = 4.22, 10.7 Hz, 1 H), 3.71–3.77 (m, 6 H), 3.81 (d, J = 8.5 Hz, 
1 H), 3.83 (d, J = 9.3 Hz, 1 H), 3.98 (dd, J = 9.5, 9.5 Hz, 1 H), 4.06 (dd, 
J = 9.0, 9.0 Hz, 1 H), 4.25 (br s, 2 H), 4.34 (d, J = 11.6 Hz, 1 H), 4.42 
(d, J = 12.1 Hz, 1 H), 4.47 (d, J = 10.9 Hz, 1 H), 4.50 (d, J = 10.8 Hz, 
1 H), 4.51–4.56 (m, 3 H), 4.57 (d, J = 11.3 Hz, 1 H), 4.61 (d, J = 12.2 Hz, 
1 H), 4.62 (d, J = 12.6 Hz, 1 H), 4.66 (d, J = 12.5 Hz, 1 H), 4.79 (br s, 
1H, H-1′), 4.83 (d, J = 10.8 Hz, 1 H), 5.32 (br s, 1H, H-1), 7.17–7.31 
(m, 35 H, ArH); 13C NMR (125 MHz, CDCl3)  55.1, 69.3, 70.3, 71.2, 
71.4, 72.0(2), 72.5, 73.0, 73.3, 73.5, 73.7, 74.8(2), 75.1, 75.9, 80.1, 80.3, 
98.7 (C-1′), 100.1 (C-1), 127.2, 127.3, 127.6, 127.6, 127.8, 128.1, 128.4, 
128.6, 138.3, 138.6, 138.7, 138.9.; Anal. Calcd for C62H66O11: C, 75.43; 
H, 6.74. Found: C, 75.44; H, 6.78.


